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Rupture of a ferrofluid droplet in external magnetic fields using a single-component lattice
Boltzmann model for nonideal fluids
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A nonisotropic tensorial extension of the single-component Shan-Chen pseudopotential Lattice Boltzmann
method for nonideal fluids is presented. Direct comparison with experimental data shows that this extension is
able to capture relevant features of ferrofluid behavior, such as the deformation and subsequent rupture of a
liquid droplet as a function of an externally applied magnetic field. The present model offers an economic
lattice-kinetic pathway to the simulation of complex ferrofluid hydrodynamics.
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I. INTRODUCTION

Ferrofluids are a special class of colloidal suspensions of
nanoscale ferromagnetic materials in a liquid carrier, which
respond to the presence of an external magnetic fields by
developing an internal magnetic dipole, either aligned (ferro)
or counteraligned (antiferro) with the external magnetic field
[1,2]. The possibility of magnetic control over their proper-
ties is triggering both basic and application-oriented re-
search, such as biomedical applications and targeted drug
delivery using magnetic nanoparticles [3]. The motion of
magnetic nanoparticles in complex fluids is an important and
challenging phenomenon, hardly amenable to a quantitative
analysis on purely analytical means. As a result, efficient and
robust computational methods for the numerical simulation
of their dynamical behavior are constantly in high demand.
Over the last decade, a new class of mesoscopic methods
based on discrete kinetic theory (lattice Boltzmann, LB for
short) have emerged as a powerful tool for the numerical
investigation of a broad class of complex flows, including
multicomponent and multiphase flows [4,5]. In the recent
past, this model has been extended to broader physical sce-
narios, involving the competition between short-range attrac-
tion and midrange repulsion [6-8]. In this paper, we point
out that such techniques may find a new set of applications in
the domain of ferrohydrodynamics. Lattice Boltzmann mod-
els for magnetic fluids date back to the early 90s [9,10], and
have since then extended to ferrofluids as well [11-16].

In particular, Ref. [13] introduced an anisotropic exten-
sion of the multicomponent Shan-Chen model to describe
magnetic interactions. In this work, we show that a simpler
(single-component) anisotropic extension of the SC model is
capable of reproducing the deformation and subsequent rup-
ture of a magnetic droplet under the effect of an external
magnetic field, in quantitative agreement with experimental
data. This may open an economic pathway to the application
of LB techniques [17] to a broad class of ferrohydrodynamic
problems.
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PACS number(s): 47.11.—j, 47.57.J—, 47.65.Cb

II. THEORETICAL BACKGROUND

The standard LB equation with pseudopotential interac-
tion (see below) can be expressed as follows (time step made
unit for simplicity):

filx+ept+1) = filx,t) == w(f; = i) + Fi(x,1), (1)

where f; is the probability density function of finding a par-
ticle at site x at time ¢, moving along the ith lattice direction
defined by the discrete speeds ¢;, with i=0,...,b. In this
work we shall refer to a standard nine-speed two-
dimensional (2D) lattice, with »=8. The left-hand side of Eq.
(1) stands for molecular free-streaming, whereas the right-
hand side represents the collisional relaxation toward local
Maxwellian equilibrium, on a time scale 7=1/w. The mac-
roscopic fluid density p and velocity i are given by p(x,?)
=Ef=0fi(x,t) and p(x,t)u(x,t):Ef;Ocifi(x,t), respectively.
The equilibrium distribution function is given by a low-
Mach second-order expansion of a local Maxwellian,
namely,

1 1 1
iq=WiP<1+_zci'u+p(ci'u)2_?”2)- (2)

s s s

Finally, the term F,=w;F-¢;/c in Eq. (1) describes the cou-
pling to external fields, as well as intermolecular interactions
for the case of nonideal fluids. There are many different ways
to implement this term [18]; in the present work we choose
the original method proposed by Shan-Chen, namely, a stan-
dard shift of the velocity field in the local equilibrium,
fiu)— f{%(u+F7/p). In the Shan-Chen pseudopotential
method, the self-consistent force takes the following form:

b
F=- Glﬁ(x)E wil(x +¢;)e;, 3)
i=0

where /(p) is the local pseudopotential governing the inter-
molecular interactions. The specific expression of ¢{(p) given
by Shan and Chen is the following [4]:
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Yr=\po(1 = ePP), 4)

where p, is a reference density. The structure of the Shan-
Chen force is quite general and elegant: the interaction,
whose strength is controlled by the scalar parameter G, is
basically a two-point coupling between the pseudopotential
(sometimes also interpreted as a generalized density) at a
given location x, and the same pseudopotential at neighbor
locations x +c¢;. For all its simplicity, this term can be shown
to feature the two major ingredients of nonideal fluids,
namely, a nonideal equation of state and a nonzero surface
tension, both driven by the same interaction parameter G [6].
In particular, separation between a dense and light phase is
known to occur beyond a critical threshold G<G.=-4
(negative sign codes for attraction) at p.=pg In 2.

A distinctive feature of ferrofluids is their anisotropic be-
havior, as related to their sensitivity to external magnetic
fields [1]. In particular, it is known that magnetic droplets
undergo anisotropic deformations in response to an exter-
nally applied magnetic field. The microscopic origin of such
deformations is fairly nontrivial, involving as it does com-
plex interface physics and, eventually, even the spatial con-
figuration of electronic degrees of freedom [2]. However, at a
mesoscopic level, this deformation can be represented by a
nonisotropic contribution of the magnetic interaction to the
fluid pressure. In particular, for a ferrofluid exposed to a
magnetic field B along, say, the x direction, the pressure
tensor acquires an unbalance Py — P =B?/2u, po being
the magnetic permeability.

Since the Shan-Chen force contributes a nonideal (isotro-
pic) term to the pressure tensor, nonisotropic extensions of
the Shan-Chen method prove capable of modeling the pres-
ence of a magnetic field [13]. In previous lattice Boltzmann
models based on the Shan-Chen scheme, magnetic interac-
tions were associated with additional (multicomponent) lat-
tice population carrying magnetic fields/dipoles. However, to
the purpose of describing magnetic coupling to an external
field, a simpler single-component model can be devised,
which requires no additional populations as compared to the
nonmagnetic case. For the sake of completeness, we proceed
to provide the mathematical details of the procedure.

III. ANISOTROPIC SINGLE-COMPONENT SHAN-CHEN
MODEL

To keep full generality, we begin by assuming that the
scalar G be replaced by an angle-dependent interaction, with
a separate coupling strength, G;, for each direction. Thus, the
Shan-Chen force generalizes to

8
F =— i(x) >, w,Gllx + e;di)edr, (5)
i=0

where we have restored the time step dr for dimensional
clarity.

By Taylor expanding Eq. (3) up to second order in dt, we
find

F= lﬂ(x)E w,Geh(x)dt = goy?, (6)

PHYSICAL REVIEW E 79, 056706 (2009)

F'= Qb(x)z wiGieie; V h(x)di’ = g, - V%, (7)

where we have set

8= 2 w;Gedr, (8)

g1 = E w,Geicidt”. 9

Clearly, the standard isotropic case, G;=G, delivers the fa-

miliar result g,=0 and 5 1=Gl, Icf being the identity tensor.
The volumetric force g, does not come in divergence form,
and consequently it does not necessarily contribute to the
pressure tensor. As a result, we set it to zero by imposing the
usual parity-symmetry condition G;=G;*, where i* is the
mirror partner of 7, i.e., ¢;+¢;* =0. This leaves us with only
four independent G;’s out of the original eight (the rest par-
ticle i=0 makes no contribution to the force term due its
zero-velocity magnitude).

Let us now focus on the contribution to the nonideal
pressure tensor componentwise: PM:*‘é—zZ,-wiGicixcix, Py
:-‘é—inwiGicixci),, and Pyyz*'é—zE,-wiGiciyc,-y. With the notation,
G,=G3=G,, G,=G4=G,, G5s=G;=G,, and Gc=G3=G,,,

we obtain the following explicit expressions:

S| 2 1
Pxx=cs3[50x+ﬁwxﬂcyﬁ] 1o
S| 2 1
P},y=csz{§G},+E(ny+ny)}, (11)
and
S| 1
ny=c.sz[ﬁ(cxy-cyx)]. (12)

It is readily checked that in the case of isotropic G, these
reduce to the familiar Shan-Chen expressions P,.=P,,
=c’GyP12, P,,=0.

With these explicit expressions at hand, we can finally
draw a quantitative parallel with a magnetic fluid. As a ref-
erence case, let us consider the following set of values G,
=Gy, G,,=G, and G,=G(+ 6G,,. By equating the extra com-
ponent due to the nonisotropy to the magnetic pressure, we
obtain

B2y = 8Goc /2. (13)

For the case of a magnetic droplet, to be considered here, it is
expedient to refer to the dimensionless ratio of magnetic to
capillary pressure, known as Bond number,
_ "8Gy
Bo= e = , (14)
P 20/ DO

where o is the surface tension and D, is the diameter of the
unperturbed (circular) droplet. This completes our magnetic
analogy. In the sequel, we shall validate it against literature
data on the deformation of a magnetic droplet as a function
of the Bond number.
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TABLE 1. Square eccentricity of the deforming droplet as a
function of the Bo number.
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5G, Bo b a e?

0.005 0.685 20 21 0.093
0.010 1.37 19 22 0.254
0.020 2.74 18 24 0.438
0.030 4.11 17 26 0.572
0.040 5.48 15 28 0.713
0.050 6.85 14 30 0.782
0.060 8.22 12 31 0.850
0.070 9.59 11 35 0.901
0.080 10.96 10 38 0.931
0.090 12.33 9 41 0.952
0.100 13.70 9 44 0.958
0.110 15.07 8 47 0.971
0.120 16.44 7 50 0.980

IV. NUMERICAL RESULTS

Baseline simulations have been performed on a 128
X 128 square lattice, with periodic boundary conditions. The
main input parameters are py=1 and Gy=-4.9, correspond-
ing to a surface tension 0,=0.019. More specifically, we fix
G,=G,,=G,,=G and systematically vary the Bond number
by acting upon the parameter G,=G+ 6G. Initial conditions
are set to a constant density p;,=In 2, with a random pertur-
bation dp*=0.01p;,. Upon phase separation, the droplet re-
mains stable with density p;~2.0 in the liquid state and p,
~0.2 in the vapor state. In the computation of the Bond
number, we thus estimate ¢/* ~ (¢/,2+ ¢t§)/2 ~0.39.

As a primary observable, we monitor the square eccen-
tricity of the droplet, e>=1-5b%/a’ a and b representing the
minor and major axis of the droplet, respectively. The square
eccentricity e>=1—-(b/a)? obtained by the simulation is com-
pared with the experimental data, as provided in Ref. [19]
(see Table T and Fig. 1).

Experimental data are available up to Bo~5.4. In this
range, a quantitative agreement between the simulations and
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FIG. 1. (Color online) Square eccentricity versus Bond number.

LB simulations (<), experimental data (V).

FIG. 2. (Color online) Sequence of density contours illustrating
the droplet deformation at increasing Bond number, Bo
=0,6.84,13.68,16.44. The figures refer to time #=5000.

the experimental data is obtained, provided that the square
eccentricity is plotted as a function of the rescaled Bond

number, Bo=Bo/Bo*, where Bo* ~ 1.28 and Bo*~4.55 are
the characteristic Bond numbers resulting from a best fit of
the experimental data and the 2D simulations, respectively.
In Fig. 1, the simulation results and experimental data
are represented, together with the analytical fit, e’=1
—exp(—ﬁo). As one can see, once the Bond number is prop-
erly rescaled, both simulations and experimental data fit re-
markably well within the same analytical curve. The fact that
experimental data exhibit a smaller value of Bo* as com-
pared to the simulation matches the expectation of a larger
propensity to deformation of three-dimensional droplets,
with respect to two-dimensional ones. Indeed, the experi-
ments are performed in three dimensions and with a finite
aspect ratio h/D~0.5, h being the height of the magnetic
droplet, while our two-dimensional simulations correspond
to an infinite aspect ratio 7/ D —cc. Based on the analytical
calculations presented in [19], and neglecting the so-called
demagnetizing factor (not included in the simulation), at low
values of the eccentricity, we can write e~ X332+—BZB0, where
x is the magnetic susceptibility and B‘2=(l+h%/ D?). From
this expression, taking the values y ~2.2 and B>=4/5 for the
experiments and B%?=0 and x=1 for the simulations, we ob-
tain e(zex )/ e(zsim)~3.39, which compares fairly well with the
(inverse) ratio of the characteristic Bond numbers
4.55/1.28 ~3.55. The sequence of elliptic droplet configura-
tions at increasing Bond number, is shown in Fig. 2. Simu-
lation data stop at aspect ratios a/b~7, beyond which the
droplet breaks down (the same limit is observed in Fig. 7 of
Ref. [19]). Typical density profiles, together with the corre-
sponding forces, for the case Bo=6.84 and Bo=16.44, are
shown in Fig. 3.

Grid independence of our results has been tested. By run-
ning at different grid resolutions (64 to 256%) at Bond num-
bers below the rupture limit, the results do not change for
more than a few percent.
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FIG. 3. (Color online) Density cuts across the droplet centerlines along the x and y directions, and corresponding forces at Bo=6.84 and
Bo=16.44, at time r=5000. The force is magnified by a factor 5 for presentation purposes; nx=ny=128 are the domain dimensions.

In order to assess the stability of the elliptical droplet
toward further increases in the magnetic field, we have also
investigated the region Bo>16.5. Simulations have been
conducted on up to 10° time steps, corresponding to hun-
dreds of magnetic times, f,,,,=D/cs, c4=B/ V2 u0p being the
Alfven speed.

At Bo=32, we have not been able to find any stable el-
liptic configuration of the droplet. At Bo=48, the droplet was
found to break down into a wormlike structure, which is
highly reminiscent of the dumbbell configurations observed
in the experiments [19] (see Fig. 4). To inquire the nature of
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FIG. 4. (Color online) Density contours after the rupture of the
droplet, corresponding to Gy=-4.55 and 6G(=0.35, corresponding
to Bo~48. The snapshot refers to time #=5000.

these configurations, we have repeated the simulation with
10242 grid points and the same Bond number, Bo~48, as in
the 1282 grid. The qualitative picture (not shown for space
limitations) is basically the same as in the 1282 grid, al-
though a one-to-one correspondence cannot be expected
since we are dealing with unstable structures. By further in-
creasing the magnetic field, the experiments report evidence
of multibranched fine-scale structures [19], (see also [1], p.
211). Simulations at Bo=383, with droplets of diameter D
=320 on a 10242 grid, show indeed the emergence of multi-

1000 25
800 2
—_— 15
>
400 1
200 05
0 0

0 200 400 600 800 1000
X

FIG. 5. (Color online) Density contours at time t=5000, after
the rupture of the droplet, corresponding to Gy=-4.55 and G,
=0.35 on a 10247 grid, corresponding to Bo=383. The onset of
fine-scale branched structures is clearly visible.
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branched structures, qualitatively similar to the experimental
ones (see Fig. 5). A quantitative investigation of such fasci-
nating instabilities requires systematic studies at high spatial
resolution and will make the object of future research.

V. CONCLUSIONS

Summarizing, we have presented a nonisotropic extension
of the single-component Shan-Chen model for nonideal flu-
ids, which is capable of modeling the deformation of a mag-
netic droplet, in quantitative agreement with experimental
data. The model also shows the emergence of multilevel
branched structures, in the unstable regime after the droplet
break-up; at high values of the Bond number (Bo> 16.5), the
simulated structures appear to be qualitatively similar to the
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ones observed in the experiments. It is hoped that the present
model may open an efficient pathway to the application of
LB techniques to the study of complex ferromagnetic fluid
phenomena, such as the development of labyrinthine insta-
bilities [20], the motion of ferrofluid droplets in space-time
changing magnetic fields [21], as well as to practical appli-
cations, such as targeted drug delivery via magnetic nano-
droplets [3].
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